Grenthe, I. \& Nordin, E. (1978). To be published.
Hansson, M. \& Börtin, O. (1968). Acta Chem. Scand. 22, 1689.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Kay, M. I. \& Frazer, B. C. (1961). Acta Cryst. 14, 56-57.
Klanderman, K. A., Hamilton, W. C. \& Bernal, I. (1977). Inorg. Chim. Acta, 23, 117-1 29.

Linhard, M., Siebert, H. \& Weigel, M. (1955). Z. Anorg. Allg. Chem. 278, 287-299.
Mori, M. (1957). Inorg. Synth. 5, 131-135.
Nakamoto, K., Fujita, J. \& Murata, H. (1958). J. Am. Chem. Soc. 80, 4817-4823.
Raymond, K. N., Meek, D. W. \& Ibers, J. A. (1968). Inorg. Chem. 7, 1111-1117.
Stephens, F. S. (1969). J. Chem. Soc. A, pp. 2081-2087.
Svensson, C. (1975). Acta Cryst. B31, 2016-2018.

Acta Cryst. (1978). B34, 2288-2290

Rubidium Hexabromobismuthate(III)

By F. Lazarini
Department of Chemistry, Faculty of Natural Sciences and Technology, University of Ljubljana, Murnikova 6, 61000 Ljubljana, Yugoslavia

(Received 21 February 1978; accepted 22 March 1978)

Abstract

Rb}_{3} \mathrm{BiBr}_{6}\), orthorhombic, Pnma, $a=$ 13.311 (8), $b=26.63$ (1), $c=8.603$ (4) \AA; $D_{o}=$ $4.10(1) \mathrm{g} \mathrm{cm}^{-3}, Z=8, D_{c}=4.115 \mathrm{~g} \mathrm{~cm}^{-3} ; R=0.079$ for 1240 reflexions $[I>4 \sigma(I)$]. The structure consists of isolated octahedral BiBr_{6}^{3-} anions and of Rb^{+}cations with thoroughly irregular coordination polyhedra.

Introduction. This work is a new part of the systematic investigation of the stereochemical behaviour of the hexahalobismuthate(III) groups in the presence of various cations (Lazarini, 1977a,b,c,d). There are few known $A_{3} B X_{6}$ structures (Wells, 1975). Almost all of them can be derived from the cryolite structural type. $\mathrm{Rb}_{3} \mathrm{BiBr}_{6}$ seems to be unrelated to this structural family.

Yellow crystals of $\mathrm{Rb}_{3} \mathrm{BiBr}_{6}$ were grown by slow evaporation from an aqueous solution obtained by dissolving $\mathrm{Bi}(\mathrm{OH})_{3}$ and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ (molar 2:3 ratio) in a dilute HBr solution. The formula was determined by standard chemical analytical methods (calculated: $\mathbf{2 2 . 1 2 \% ~ B i}, 50.74 \% \mathrm{Br}$; found: $22.0 \% \mathrm{Bi}, 51 \cdot 2 \% \mathrm{Br}$). A well developed crystal, selected for the intensity measurements, was characterized by the following planes (in parentheses are the distances from the crystal faces to an arbitrary origin inside the crystal): (010) (0.316 mm), (010) $(0.012 \mathrm{~mm}), \pm(011)(0.178$ $\mathrm{mm}), \pm\left(01{ }^{1} 1\right)(0.178 \mathrm{~mm}),(111)(0.234 \mathrm{~mm}),(\overline{1} \overline{1} \overline{1})$ (0.222 mm), ($111 \overline{1}$) $(0.225 \mathrm{~mm})$, ($1 \overline{1} 1)(0.197 \mathrm{~mm})$, $(\overline{1} 11)(0.233 \mathrm{~mm}),(1 \overline{1} \overline{1})(0.190 \mathrm{~mm})$ and $(\overline{1} 1 \overline{1})(0.240$ mm).

The intensity data were collected at $20(1)^{\circ} \mathrm{C}$ with an Enraf-Nonius CAD-4 diffractometer. Experi-
mental conditions were: graphite-monochromatized Mo $K \alpha$ radiation ($\lambda=0.71069 \AA$), $\omega-2 \theta$ scan, $\theta_{\text {min }}=$ $1, \theta_{\max }=25^{\circ}, 2 \theta$ scan width $\left(^{\circ}\right)=0.9+0.2 \tan \theta$, aperture $(\mathrm{mm})=2.5+0.9 \tan \theta$, maximum scan time $=30 \mathrm{~s}$, background: $\frac{1}{4}$ of the scan time at each of the scan limits. A set of 2722 independent reflexions were recorded. During the refinement procedure, it became apparent that the weaker reflexions were poorly measured. Therefore all reflexions with $I<4 \sigma(I)$ (calculations based on counting statistics) were rejected and only 1240 reflexions used in the refinement. Corrections were applied for Lorentz and polarization effects and for absorption [$\mu(\mathrm{Mo} K a)=376.4 \mathrm{~cm}^{-1}$]. The absorption corrections A^{*}, calculated with the measured crystal dimensions (Gaussian-grid method), range from 34.9 to $206 \cdot 3$. The unit-cell parameters were obtained from a least-squares fit of the θ values of 15 reflexions measured on the diffractometer. The systematic absences ($0 k l: k+l=2 n+1 ; h k 0: h=2 n$ +1) and the clearly centrosymmetric distribution of the normalized structure factors indicated the space group Pnma, which was subsequently confirmed by successful refinement. \dagger

The positions of two Bi atoms of the asymmetrical set [on special $4(b)$ and $4(c)$ positions] were determined from the three-dimensional Patterson map, while the Br and Rb atoms were located from two successive

[^0]Fourier summations. The structure was then refined by full-matrix least-squares techniques with anisotropic thermal parameters and anomalous-dispersion correction for all atoms. The function minimized in the leastsquares procedure was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$. The weighting scheme was as follows: when $\left|F_{o}\right| \leq 100: w_{F}=$ $\left(\left|F_{o}\right| / 100\right)^{2 \cdot 5}$, when $100<\left|F_{o}\right| \leq 220: w_{F}=1 \cdot 0$, when $\left|F_{o}\right|>220: w_{F}=\left(220 /\left|F_{o}\right|\right)^{1 \cdot 5}$, when $\sin \theta \leq 0 \cdot 20: w_{S}$ $=(\sin \theta / 0.20)^{1.5}$, when $0.20<\sin \theta \leq 0.38: w_{s}=1.0$, when $\sin \theta>0.38: w_{S}=(0.38 / \sin \theta)^{2 \cdot 0}, w=0 \cdot 1 w_{F} w_{S}$. An isotropic extinction parameter (Zachariasen, 1963; Larson, 1967) was also included in the final stage of the refinement $\left[g=2.6(4) \times 10^{-3}\right]$. Final R values are: $R=$ $\sum\left|F_{o}\right|-\left|F_{c}\right|\left|/ \sum\right| F_{o} \mid=0.079$ and $R_{w}=\left[\sum w\left(F_{o}-\right.\right.$ $\left.\left.F_{c}\right)^{2} / \sum w F_{o}^{2}\right]^{1 / 2}=0.098$ for 1240 reflexions and 98 parameters. The average parameter shift to error ratio was 0.03 in the final cycle.

All calculations were performed on the CDC Cyber computer of RRC Ljubljana with the XRAY 72 system of crystallographic programs (Stewart, Kruger, Ammon, Dickinson \& Hall, 1972) adapted by Professor L. Golič. Atomic scattering factors for neutral atoms tabulated by Cromer \& Mann (1968) and the values of f^{\prime} and $f^{\prime \prime}$ for the anomalous-dispersion correction tabulated by Cromer \& Liberman (1970) were applied.

The positional parameters are listed in Table 1. A stereoscopic drawing (Johnson, 1965) of the structure and the atom-numbering system used are shown in Fig. 1. Some important interatomic distances and angles are given in Table 2.

Table 1. Final positional parameters $\left(\times 10^{4}\right)$ with standard deviations in parentheses

	x	y	z
$\operatorname{Bi}(1)$	$1702(2)$	2500	$-38(5)$
$\operatorname{Bi}(2)$	5000	0	0
$\operatorname{Br}(1)$	$3634(5)$	2500	$-1456(11)$
$\operatorname{Br}(2)$	$-245(5)$	2500	$1384(10)$
$\operatorname{Br}(3)$	$2313(4)$	$1713(2)$	$2039(8)$
$\operatorname{Br}(4)$	$1075(5)$	$1704(3)$	$-1986(10)$
$\operatorname{Br}(5)$	$6712(4)$	$626(2)$	$10(11)$
$\operatorname{Br}(6)$	$4336(4)$	$490(2)$	$2807(8)$
$\operatorname{Br}(7)$	$3850(5)$	$691(2)$	$-1748(9)$
$\operatorname{Rb}(1)$	$4947(5)$	$1606(2)$	$708(8)$
$\operatorname{Rb}(2)$	$3451(5)$	$1580(2)$	$5632(8)$
$\operatorname{Rb}(3)$	$1766(5)$	$458(3)$	$589(11)$

Discussion. The structure of $\mathrm{Rb}_{3} \mathrm{BiBr}_{6}$ consists of isolated octahedral BiBr_{6}^{3-} anions and Rb^{+}cations. The coordination polyhedra of Br atoms around Rb^{+} cations are thoroughly irregular. The two BiBr_{6}^{3-} octahedra of the asymmetrical set $[\mathrm{Bi}(1)$ is on a mirror plane, $\mathrm{Bi}(2)$ on a symmetry centre] are similar, as regards bond distances and angles, but both are slightly distorted. The deviations from the regular octahedral geometry are not very significant and are probably due to crystal-packing forces.

The $\mathrm{Bi}-\mathrm{Br}$ bond lengths range from 2.824 to 2.884 \AA. It is interesting to compare these bond lengths with the $\mathrm{Bi}-\mathrm{Br}$ (terminal) and $\mathrm{Bi}-\mathrm{Br}$ (bridging) distances in

Table 2. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ with standard deviations in parentheses

$\mathrm{Bi}(1)-\mathrm{Br}(1)$	2.847 (8)	$\mathrm{Rb}(1)-\mathrm{Br}(5)$	3.563 (8)
$\mathrm{Bi}(1)-\mathrm{Br}(2)$	2.865 (8)	$\mathrm{Rb}(1)-\mathrm{Br}(6)$	3.573 (9)
$\mathrm{Bi}(1)-\mathrm{Br}(3), \operatorname{Br}\left(3^{1}\right)$	2.872 (7)	$\mathrm{Rb}(1)-\mathrm{Br}(7)$	3.540 (9)
$\mathrm{Bi}(1)-\mathrm{Br}(4), \operatorname{Br}\left(4^{\prime}\right)$	2.828 (8)	$\mathrm{Rb}(2)-\operatorname{Br}\left(1^{v}\right)$	3.511 (9)
$\mathrm{Bi}(2)-\mathrm{Br}(5), \mathrm{Br}\left(5^{\prime \prime}\right)$	2.824 (5)	$\mathrm{Rb}(2)-\mathrm{Br}\left(2^{\text {III }}\right.$)	3.467 (8)
$\mathrm{Bi}(2)-\mathrm{Br}(6), \operatorname{Br}\left(6^{\text {II }}\right.$)	2.884 (7)	$\mathrm{Rb}(2)-\mathrm{Br}(3)$	3.461 (9)
$\operatorname{Bi}(2)-\operatorname{Br}(7), \operatorname{Br}\left(7^{1 \prime}\right)$	2.827 (7)	$\mathrm{Rb}(2)-\mathrm{Br}\left(4^{\text {¹ }}\right.$)	3.696 (9)
		$\mathrm{Rb}(2)-\operatorname{Br}\left(5^{\text {vil }}\right.$)	3.482 (8)
$\mathrm{Rb}(1)-\mathrm{Br}(1)$	3.492 (8)	$\mathrm{Rb}(2)-\mathrm{Br}\left(7^{7}\right)$	3.312 (9)
$\mathrm{Rb}(1)-\mathrm{Br}\left(2^{\text {ili }}\right.$)	3.642 (9)	$\mathrm{Rb}(3)-\mathrm{Br}(3)$	3.64 (1)
$\mathrm{Rb}(1)-\mathrm{Br}(3)$	3.700 (9)	$\mathrm{Rb}(3)-\mathrm{Br}\left(5^{\prime \prime}\right)$	3.563 (9)
$\mathrm{Rb}(1)-\operatorname{Br}\left(4^{\text {iv }}\right.$)	3.55 (1)	Rb (3)- $-\mathrm{Br}\left(6^{\text {vil }}\right.$)	3.518 (9)
		$\mathrm{Rb}(3)-\mathrm{Br}(7)$	3.48 (1)

$\mathrm{Br}(1)-\mathrm{Bi}(1)-\mathrm{Br}(2)$	179.9 (1)	$\mathrm{Br}(5)-\mathrm{Bi}(2)-\mathrm{Br}(6)$	88.7 (2)
$\mathrm{Br}(1)-\mathrm{Bi}(1)-\mathrm{Br}(3)$	90.6 (2)	$\mathrm{Br}\left(5^{\text {II }}\right)-\mathrm{Bi}(2)-\operatorname{Br}\left(6^{\text {II }}\right.$)	88.7 (2)
$\mathrm{Br}(1)-\mathrm{Bi}(1)-\mathrm{Br}\left(3^{1}\right)$	90.6 (2)	$\mathrm{Br}(5)-\mathrm{Bi}(2)-\mathrm{Br}(7)$	93.1 (2)
$\mathrm{Br}(1)-\mathrm{Bi}(1)-\mathrm{Br}(4)$	90.7 (2)	$\operatorname{Br}\left(5^{\text {II }}\right)-\mathrm{Bi}(2)-\mathrm{Br}\left(7^{\text {II }}\right.$)	$93 \cdot 1$ (2)
$\mathrm{Br}(1)-\mathrm{Bi}(1)-\mathrm{Br}\left(4^{\prime}\right)$	90.7 (2)	$\operatorname{Br}(5)-\mathrm{Bi}(2)-\operatorname{Br}\left(6^{\prime \prime}\right)$	91.3 (2)
$\mathrm{Br}(2)-\mathrm{Bi}(1)-\mathrm{Br}(3)$	89.5 (2)	$\mathrm{Br}(6)-\mathrm{Bi}(2)-\mathrm{Br}\left(5^{\text {II }}\right.$)	91.3 (2)
$\mathrm{Br}(2)-\mathrm{Bi}(1)-\mathrm{Br}\left(3^{1}\right)$	89.5 (2)	$\mathrm{Br}(5)-\mathrm{Bi}(2)-\mathrm{Br}\left(7^{\text {II }}\right.$)	86.9 (2)
$\mathrm{Br}(2)-\mathrm{Bi}(1)-\mathrm{Br}(4)$	89.2 (2)	$\mathrm{Br}(7)-\mathrm{Bi}(2)-\mathrm{Br}\left(5^{\text {II }}\right)$	86.9 (2)
$\operatorname{Br}(2)-\mathrm{Bi}(1)-\mathrm{Br}(4)$	89.2 (2)	$\mathrm{Br}(6)-\mathrm{Bi}(2)-\mathrm{Br}(7)$	89.1 (2)
$\mathrm{Br}(3)-\mathrm{Bi}(1)-\mathrm{Br}(4)$	84.6 (2)	$\operatorname{Br}\left(6^{\text {II }}\right)-\mathrm{Bi}(2)-\operatorname{Br}\left(7^{\text {II }}\right.$)	89.1 (2)
$\mathrm{Br}\left(3^{1}\right)-\mathrm{Bi}(1)-\mathrm{Br}\left(4^{1}\right)$	84.6 (2)	$\mathrm{Br}(6)-\mathrm{Bi}(2)-\mathrm{Br}\left(7^{11}\right)$	90.9 (2)
$\mathrm{Br}(3)-\mathrm{Bi}(1)-\mathrm{Br}\left(3^{1}\right)$	93.8 (2)	$\mathrm{Br}(7)-\mathrm{Bi}(2)-\mathrm{Br}\left(6^{\text {III }}\right.$)	90.9 (2)
$\mathrm{Br}(3)-\mathrm{Bi}(1)-\mathrm{Br}\left(4^{\prime}\right)$	177.9 (2)	$\mathrm{Br}(5)-\operatorname{Bi}(2)-\operatorname{Br}\left(5^{\prime \prime}\right)$	180.0
$\mathrm{Br}(4)-\mathrm{Bi}(1)-\mathrm{Br}\left(3^{1}\right)$	177.9 (2)	$\mathrm{Br}(6)-\mathrm{Bi}(2)-\mathrm{Br}\left(6^{\text {I }}\right.$)	180.0
$\mathrm{Br}(4)-\mathrm{Bi}(1)-\mathrm{Br}\left(4^{\prime}\right)$	97.0 (3)	$\mathrm{Br}(7)-\mathrm{Bi}(2)-\operatorname{Br}\left(7^{\text {I }}\right.$)	180.0

Symmetry code

Fig. 1. Stereoscopic drawing of the unit cell viewed along [001]. The atoms are represented by thermal ellipsoids drawn at the 70% probability level.
other bromobismuthates(III) with BiBr_{6}^{3-} groups linked to polyanions. For example, in potassium decabromodibismuthate(III) tetrahydrate (Lazarini, 1977a) with binuclear $\mathrm{Bi}_{2} \mathrm{Br}_{10}^{4-}$ anions, the $\mathrm{Bi}-\mathrm{Br}$ (terminal) distances range from 2.749 to $2.878 \AA$, the $\mathrm{Bi}-\mathrm{Br}$ (bridging) distances are 2.979 and $3.006 \AA$; in tetraphenylphosphonium enneabromodibismuthate(III) (Lazarini, 1977c) with binuclear $\mathrm{Bi}_{2} \mathrm{Br}_{9}^{3-}$ anions, the $\mathrm{Bi}-$ Br (terminal) distances range from 2.704 to $2.766 \AA$ and the $\mathrm{Bi}-\mathrm{Br}$ (bridging) distances from 2.987 to 3.109 \AA A; while in caesium enneabromodibismuthate(III) (Lazarini, 1977d), with BiBr_{6}^{3-} octahedra sharing three cis-vertices with three other octahedra forming corrugated layers, the $\mathrm{Bi}-\mathrm{Br}$ (terminal) distances are 2.713 and the $\mathrm{Bi}-\mathrm{Br}$ (bridging) distances $2.979 \AA$. It is obvious that the $\mathrm{Bi}-\mathrm{Br}$ distances in isolated BiBr_{6}^{3-} anions are slightly longer than the $\mathrm{Bi}-\mathrm{Br}$ (terminal) distances and considerably shorter than the $\mathrm{Bi}-$ Br (bridging) distances, in structures with BiBr_{6}^{3-} groups linked to polynuclear anions.

The $\mathrm{Rb}-\mathrm{Br}$ contacts are in agreement with expected values (ionic radii: $\mathrm{Rb}^{+} 1.49, \mathrm{Br}^{-} 1.95 \AA$; Wells, 1975). Contacts between Br atoms of different anions shorter than $3.90 \AA$ are not present.

I wish to thank Professor L. Golič for some helpful discussions. The financial support of the Research Community of Slovenia is also gratefully acknowledged.

References

Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Lazarini, F. (1977a). Acta Cryst. B33, 1954-1956.
Lazarini, F. (1977b). Acta Cryst. B33, 1957-1959.
Lazarini, F. (1977c). Acta Cryst. B33, 2686-2689.
Lazarini, F. (1977d). Acta Cryst. B33, 2961-2964.
Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. \& Hall, S. R. (1972). The XRAY system - version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Wells, A. F. (1975). Structural Inorganic Chemistry, 4th ed. Oxford: Clarendon Press.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1978). B34, 2290-2292

Barium Chloride Dihydrate by Neutron Diffraction*

By V. M. Padmanabhan, \dagger W. R. Busing and H. A. Levy
Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA

(Received 7 March 1978; accepted 23 March 1978)

Abstract

BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\), monoclinic, $P 2_{1} / n, Z=4, a=$ 6.7215 (2), $b=10.9080$ (3), $c=7.1316$ (2) $\AA, \beta=$ $91 \cdot 104$ (3) ${ }^{\circ}$ from room-temperature X-ray measurements, $\lambda\left(\mathrm{Cu} K \alpha_{1}\right)=1.54051 \AA$. Ferroelastic species: $m m m F 2 / m$. Each Ba^{2+} ion is linked to four others in a flat square pyramidal arrangement forming puckered layers parallel to (010). Each link consists of one bridging Cl^{-}ion and one bridging water molecule. The latter is oriented so that two Ba^{2+} neighbors and two H atoms are arranged approximately tetrahedrally about the O atom.

Introduction. The neutron-diffraction data collection and preliminary results have been described previously

^[* Research sponsored by the Division of Basic Energy Sciences of the Department of Energy under contract with the Union Carbide Corporation. \dagger Guest scientist, 1961, from Bhabha Atomic Research Centre, Trombay, Bombay 400085, India.]

(Padmanabhan, Busing \& Levy, 1963). We have recently made a final least-squares refinement assuming anisotropic extinction of type 1 (Coppens \& Hamilton, 1970). Intense reflections omitted in the earlier work are now included. Ten reflections judged to be affected

Table 1. Fractional coordinates $\left(\times 10^{4}\right)$ for $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
Standard errors are given in parentheses. The equipoints for $P 2_{1} / n$ are $\pm\left(x, y, z ; \frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z\right)$.

	r		
Ba	$5410(2)$	$2831(1)$	$6461(2)$
$\mathrm{Cl}(1)$	$8625(1)$	$811(1)$	$7946(1)$
$\mathrm{Cl}(2)$	$6419(1)$	$1049(1)$	$3020(1)$
$\mathrm{O}(1)$	$3777(2)$	$1404(1)$	$9409(2)$
$\mathrm{O}(2)$	$2007(2)$	$1474(1)$	$5060(2)$
$\mathrm{H}(11)$	$3534(5)$	$621(2)$	$8837(4)$
$\mathrm{H}(12)$	$4755(5)$	$1252(3)$	$10405(4)$
$\mathrm{H}(21)$	$984(5)$	$1374(3)$	$5969(4)$
$\mathrm{H}(22)$	$2471(5)$	$656(3)$	$4891(5)$

[^0]: \dagger Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33486 (12 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

